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Abstract
Video content comprehension is essential for various applications,
ranging from video analysis to interactive systems. Despite ad-
vancements in large-scale vision-language models (VLMs), these
models often struggle to capture the nuanced, spatiotemporal de-
tails essential for thorough video analysis. To address this gap,
we introduce Video-CoT, a groundbreaking dataset designed to
enhance spatiotemporal understanding using Chain-of-Thought
(CoT) methodologies. Video-CoT contains 192,000 fine-grained spa-
tiotemporal question-answer pairs and 23,000 high-quality CoT-
annotated samples, providing a solid foundation for evaluating
spatiotemporal understanding in video comprehension. Addition-
ally, we provide a comprehensive benchmark for assessing these
tasks, with each task featuring 750 images and tailored evaluation
metrics. Our extensive experiments reveal that current VLMs face
significant challenges in achieving satisfactory performance, high-
lighting the difficulties of effective spatiotemporal understanding.
Overall, the Video-CoT dataset and benchmark open new avenues
for research in multimedia understanding and support future in-
novations in intelligent systems requiring advanced video analysis
capabilities. By making these resources publicly available, we aim to
∗Both authors contributed equally to this research.
†Corresponding Authors.
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encourage further exploration in this critical area. Project website:
https://video-cot.github.io/ .

CCS Concepts
• Computing methodologies → Visual content-based index-
ing and retrieval; Video summarization.

Keywords
Video Understanding, Spatiotemporal Alignment, Multimedia

1 Introduction
Multimodal content understanding and reasoning are essential for
advancing universal artificial intelligence, particularly in the video
modality [9, 11, 30, 36, 44], where effective comprehension is cru-
cial for applications ranging from automated analysis to interactive
systems [10, 12, 37, 44]. However, existing video datasets typically
focus on content summarization or specific temporal and spatial
dimensions, which limits their effectiveness for fine-grained spa-
tiotemporal reasoning. This highlights the need for a task-rich
spatiotemporal dataset that facilitates comprehensive video under-
standing.

Recent advancements in rule-based reinforcement learning have
significantly improved the reasoning capabilities of large language
models (LLMs), such as GPT-4o [17], Deepseek-R1 [8], and Kimi-
1.5 [35]. This progress has sparked interest in Chain-of-Thought
(CoT) data [40], which incorporates intermediate reasoning steps
for problem-solving [24, 50], aiming to enhance complex reason-
ing abilities by capturing the logical chains of human thought.
Although some recent works have generated CoT reasoning data in
the video modality [5, 14, 23, 47], they often overlook fine-grained
spatiotemporal information—such as event start and end times and
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Dataset and Benchmark 

4.0s 5.0s 6.0s 7.0s 8.0s 9.0s 10.0s 11.0s 11.1s0s 43.4s... ...

Q1: There is a black SUV car away an adult in pink clothes.  
Could you tell me the duration of the SUV car appear in the video?

A1: I can see an SUV car pass through the road 
during 5.0s to 11.0s. So the duration is 5.0s to 11.0s.

Q2: Very good! Then could you tell me the position 
of the car in the video by using the bounding boxes?

A2: 5.00s:
6.00s:
11.00s: 392, 147, 408, 164. 

239, 193, 296, 237
392, 147, 408, 164

278, 186, 331, 221

5.0s 6.0s
Video Caption

5.0s

Temporal Video
Reference

A: A man is having a meeting.

Spatial Relationship
ReferenceQ: At what duration are the 

two turtles on the grass?

A: 5.0s to 6.0s in the video.

Q: What happened in
this phase?

15.0s

…

… 5.0s 6.0s…

Q: What is on the left 
of the turtle?

A: A dog.

Spatio-
Temporal

Video
Grounding

Spatial
Video

Grounding

Temporal Video Localization

Figure 1: Overview of the Video-CoT dataset. The Video-CoT dataset encompasses three key dimensions: spatio-temporal
localization and captioning, spatio-temporal grounding, and spatio-temporal reference.

the positions of subjects within videos. Therefore, there is a press-
ing need to develop a video dataset based on CoT methodologies,
addressing these gaps and supporting advanced reasoning in video
comprehension.

To address this gap, we introduce Video-CoT, a groundbreaking
dataset designed to enhance spatiotemporal understanding using
Chain-of-Thought (CoT) methodologies, one example of which is
shown in Fig. 1. Video-CoT contains 192,000 fine-grained spatiotem-
poral question-answer pairs and 23,000 high-quality CoT-annotated
samples, providing a robust resource for training and evaluating
VLMs in video comprehension. The dataset is organized into three
components: Spatio-Temporal Localization and Captioning,
which includes Temporal Video Localization (TVL) and Video Cap-
tioning (VC) tasks for temporal localization and content summa-
rization; Spatio-Temporal Grounding, consisting of Spatial Video
Grounding (SVG) and Spatio-Temporal Video Grounding (STVG),
delivering accurate temporal and spatial coordinates based on event
descriptions; and Spatio-Temporal Reference, comprising Spatial
Relationship Reference (SRR) and Temporal Video Reference (TVR),
addressing relational descriptions of event subjects in time and
space. Through these diverse tasks, we aim to enhance the model’s
reasoning capibilities to spatiotemporal information. Additionally,
we provide a comprehensive benchmark for assessing these tasks,
each featuring 750 images and tailored evaluationmetrics. Extensive
experiments reveal that current VLMs face significant challenges
in achieving satisfactory performance, underscoring the complex-
ities of effective spatiotemporal understanding. In summary, our
contributions are as follows:

• Proposal of Video-CoT Dataset. Introduction of a novel
dataset designed to enhance spatiotemporal understanding

through Chain-of-Thought (CoT) methodologies, offering a
solid foundation for evaluating video comprehension.

• Comprehensive Benchmark and Evaluation Metrics.
Development of a robust benchmark that includes tailored
evaluation metrics for assessing the performance of various
tasks within the dataset. This benchmark supports three
key dimensions: spatiotemporal localization and captioning,
spatiotemporal grounding, and spatiotemporal reference,
encompassing six distinct subtasks.

• Extensive Experiments. Conducting thorough experi-
ments that highlight the challenges faced by current visual
languagemodels (VLMs) in achieving effective spatiotempo-
ral comprehension, offering critical insights that can drive
innovation and advancement in future research.

2 Related Work
Video Datasets Video understanding is a crucial capability for
Multimodal Large Language Models (MLLMs), with accurate video
datasets serving as their foundation. Early datasets like UCF-101 [31]
and Sports-1M [18] initiated action recognition by emphasizing
visual feature learning. As the field matured, more complex datasets
emerged, including Kinetics-400/700 [19], Something-Something [7],
and ActivityNet-Captions [21]. However, existing video datasets
often fall short in capturing comprehensive spatiotemporal infor-
mation. Many focus solely on either temporal or spatial features,
lacking effective integration. For example, the Jester dataset [26]
emphasizes gesture recognition over time but offers minimal spa-
tial annotations for hand and body positions. Similarly, the Fine-
Gym dataset [29] provides temporal annotations for actions in gym
videos but lacks detailed spatial context regarding the relationships
between athletes and equipment. These gaps underscore the need

2
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Figure 2: The distribution of tasks across three primary cate-
gories.

for new datasets that effectively combine both spatial and temporal
dimensions to enhance video understanding research.

Chain-of-Thought (CoT) Chain-of-Thought (CoT) prompt-
ing [40] has emerged as a pivotal technique for enhancing the
complex reasoning capabilities of large language models (LLMs). By
explicitly decomposing multi-step problems into intermediate rea-
soning pathways, CoT significantly improves performance on tasks
such as mathematical reasoning [4] and commonsense QA [32].
Subsequent advances focus on three directions: (1) Minimizing
demonstration dependency, as seen in Zero-Shot CoT activated by
trigger phrases like "Let’s think step by step" [20]; (2) Optimizing
reasoning robustness through methods like self-consistency (aggre-
gating multiple reasoning paths) [38] and automated demonstra-
tion generation [49]; (3) Integrating external tools such as program
interpreters [6] and symbolic solvers to address computational lim-
itations. Despite these innovations, critical challenges persist in
ensuring reasoning fidelity—generated chains often contain logi-
cal inconsistencies [15] and factual hallucinations [25], motivating
ongoing research into verifiable reasoning frameworks and error-
correction mechanisms.

3 Dataset Construction and Analysis
In this section, we provide an in-depth exploration of each spa-
tiotemporal taskwithin our dataset and outline the Chain-of-Thought
(CoT) data generation process in detail.

3.1 Task Definition
Our Video-CoT dataset consists of six tasks categorized into three
key aspects:

Spatio-Temporal Localization and Captioning connects vi-
sual perception with language understanding by detecting specific
temporal events in videos and generating meaningful textual de-
scriptions. This task establishes the foundation for identifying and
articulating key events within video content. It comprises two sub-
tasks: Temporal Video Localization (TVL), which focuses on
pinpointing the precise temporal boundaries of actions or events
in untrimmed videos, such as identifying the exact duration of a
“basketball dunk” in a sports clip; and Video Captioning (VC),
which extends beyond event detection to generate natural language

1

10

100

1000

10000

100000

（0-20] s （20-40] s （40-60] s （60-80] s （80-100] s （100-120] s （120-140] s （140-160] s （160, ∞) s

SVG

Video Length Distribution Across 6 tasks 

STVG

TVL

VC

SRR

TVR

Figure 3: The video length statistic.

descriptions of video content, enabling more intuitive interaction
with video data across various contexts.

Spatio-Temporal Grounding aims to align textual queries with
corresponding spatio-temporal regions in videos, integrating spatial
and temporal reasoning to enhancemultimodal understanding. This
task includes two components: Spatial Video Grounding (SVG),
which focuses on locating specific spatial regions in video frames
that correspond to a textual query, such as identifying a “black SUV
car leaving an adult in pink clothes”; and Spatio-Temporal Video
Grounding (STVG), which extends SVG by predicting a spatio-
temporal sequence of bounding boxes across multiple frames that
match a text query, like tracking “a dog chasing a ball”. STVG
integrates spatial localization with temporal tracking, addressing
challenges like object occlusion and appearance variations to ensure
robust alignment between textual and visual representations.

Spatio-Temporal Reference focuses on understanding object
relationships and temporal dynamics within video content. By
modeling spatial and temporal dependencies, this task enhances
the interpretation of complex interactions in dynamic scenes. It
comprises two key components: Spatial Relationship Reference
(SRR), which identifies spatial relationships between objects, such
as “above”, “behind”, or “next to” within video scenes— for example,
detecting “a book on a table” during a room scan, crucial for pre-
cise scene understanding; and Temporal Video Reference (TVR),
which describes video content within specific time intervals. Given
a defined segment, TVR generates concise and contextually accu-
rate textual descriptions of events and actions occurring during
that interval, requiring a deep understanding of temporal depen-
dencies and event dynamics to produce temporally coherent and
meaningful descriptions.

3.2 CoT Dataset Building
Data Collection and Curation for our Video-CoT dataset pri-
marily relies on publicly available datasets. For the tasks of Tem-
poral Video Localization (TVL), Video Captioning (VC), and Tem-
poral Video Reference (TVR), we directly utilize existing datasets
(VTimeLLM-stage2 [16], MSR-VTT [43], MSVD [3] andWebVid [2]).
In contrast, the tasks of Spatial Relationship Reference (SRR), Spa-
tial Video Grounding (SVG), and Spatio-Temporal Video Grounding
(STVG) involve additional processing based on theHCSTVG-V1 [33]
and VidSTG [51] datasets, which provide dense annotations for each
frame.

3
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Figure 4: Pipeline for Constructing the Video-CoT Dataset.

Our filtering pipeline selects subjects or objects as query tar-
gets and ensures their consecutive presence across video frames,
discarding objects that appear for less than 2 seconds. We derive
the start and end timestamps of objects with continuous presence,
along with their pixel locations at initial, final, and intermediate
integer-second timestamps based on the video’s frame counts and
per-frame annotations. By maintaining the spatial relationships be-
tween primary event subjects and other objects in the environment,
we construct spatiotemporal relational question-answering data,
resulting in a total of 192K fine-grained spatial-temporal QA pairs.

The distribution of our dataset across six tasks is illustrated in
Fig. 2. Additionally, the dataset demonstrates a balanced distribu-
tion across various video length intervals, as shown in Fig. 3. Short
videos (0–40 seconds) comprise the majority, providing ample data
for tasks that require rapid event detection and description. Si-
multaneously, the dataset includes a significant number of longer
videos exceeding 160 seconds, enabling models to train on com-
plex long-term temporal sequences while maintaining performance.
This distribution reflects real-world video content characteristics,
encompassing both short-term events and extended sequences,
thereby supporting the development of robust models capable of
generalizing across diverse video lengths and inference tasks.

CoT Data Generation We construct a pipeline for Chain-of-
Thought (CoT) data generation in the Video-CoT dataset, as illus-
trated in Fig. 4. Leveraging existing video datasets and annotations,
we employ a two-stage methodology utilizing a vision-language
model (VLM) to analyze spatiotemporal relationships. Specifically,
we utilize the Qwen2.5-VL-72B-Instruct model, known for its ex-
ceptional ability to generate coherent, long-form reasoning chains.
The VLM processes input prompts alongside corresponding video
data while referencing relevant examples, producing structured rea-
soning outputs encapsulated within <think> and </think> tags
to represent the complete thought process.

To ensure the quality of the generated CoT data, we apply task-
specific evaluation metrics for assessing the answers. We establish
thresholds based on the average accuracy of individual tasks and
the best-performing results from prior studies, ensuring that the
model’s outputs surpass the average performance of state-of-the-
art models. Only samples with answers exceeding these thresholds

are retained in the Video-CoT dataset, effectively filtering out low-
quality chains of thought that may contain logical inconsistencies
or factual errors. To further enhance dataset quality, we implement
a manual expert review process to eliminate any remaining low-
quality data. This two-stage quality control mechanism—combining
automated screening based on metrics and manual expert verifi-
cation—ensures that our Video-CoT dataset comprises only high-
quality chain-of-thought samples, thereby effectively improving
the model’s spatiotemporal reasoning capabilities.

4 Method
To enhance the spatiotemporal reasoning capabilities of the vision-
language model (VLM) and validate the effectiveness of the Video-
CoT dataset, we propose a comprehensive fine-tuning framework
comprising two methods: Answer Supervised Fine-tuning (Ans-
SFT) and Chain of Thoughts Supervised Fine-tuning (CoT-SFT).
These methods utilize distinct data types from the original dataset
and theVideo-CoT dataset to fine-tune the samemodel, optimizing
performance across various levels of spatiotemporal understanding.
In the following sections, we provide detailed descriptions of these
two fine-tuningmethods, including their model architectures, input-
output configurations, and loss function formulations.

4.1 Answer-Supervised Fine-Tuning (Ans-SFT)
Ans-SFT focuses on direct answer alignment through end-to-end
optimization of answer generation probability. The input-output
formulation is expressed as:

Input: 𝑉 ,𝑄 → Output: 𝐴, (1)

where 𝑉 ∈ R𝑇×𝐻×𝑊 ×𝐶 represents the input video with 𝑇 frames,
and 𝑄 denotes the natural language question. Given this input pair,
the model M generates the target answer 𝐴 by maximizing the
conditional likelihood 𝑃 (𝐴 | 𝑉 ,𝑄):

𝐴∗ = argmax
𝐴

𝑃 (𝐴 | 𝑉 ,𝑄 ;𝜃 ). (2)

The method employs standard cross-entropy loss for sequence
modeling:

LAns = −
|𝐴 |∑︁
𝑡=1

log 𝑃 (𝑎𝑡 | 𝑎<𝑡 ,𝑉 ,𝑄) . (3)

4
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Table 1: Performance Comparison of VLMs on Video-CoT Benchmark Tasks.

Models Params. TVL VC SRR TVR SVG STVG

tIoU↑ MENTOR↑ EM↑ MENTOR↑ sIoU↑ tIoU↑ sIoU↑

Closed-Source MLLMs

GPT-4o [17] − 21.7 26.9 14.6 25.0 15.9 14.3 7.4
Gemini-1.5-pro [34] − 24.2 29.0 12.8 27.3 20.9 15.8 9.9

Open-Source MLLMs

Qwen2.5-VL [1] 3B 4.4 4.6 10.0 14.8 10.3 8.5 5.7
Qwen2.5-VL [1] 7B 20.0 19.1 12.4 20.1 12.5 12.9 5.9
InternVideo2_5_Chat [39] 8B 11.8 20.1 7.1 3.4 9.4 10.4 5.4
Video-UTR [45] 7B 10.3 3.7 − − 2.9 − −
LLaVA-NeXT-Video [48] 7B 8.5 4.3 6.6 − − − −
LLaVA-onevision-qwen2 [22] 7B 10.4 14.2 9.5 12.8 4.5 13.0 4.9

Table 2: Performance of Our Proposed Models on Video-CoT Benchmark Tasks.

Models Params. TVL VC SRR TVR SVG STVG

tIoU↑ MENTOR↑ EM↑ MENTOR↑ sIoU↑ tIoU↑ sIoU↑

Qwen2.5-VL [1] (Baseline) 3B 4.4 4.6 10.0 14.8 10.3 8.5 5.7
Video-Ans-SFT (Ours) 3B 8.3 (+3.9↑) 12.3 (+7.7↑) 14.1 (+4.1↑) 22.8 (+8.0↑) 14.2 (+3.9↑) 12.2 (+3.7↑) 8.1 (+2.4↑)
Video-CoT-SFT (Ours) 3B 19.7 (+15.3↑) 15.4 (+10.8↑) 16.9 (+6.9↑) 21.1 (+6.3↑) 17.0 (+6.7↑) 14.1 (5.6↑) 9.2 (3.5↑)

This approach is effective for spatiotemporal localization tasks
where answers correspond to specific spatiotemporal coordinates
(e.g., timestamps or bounding boxes). Direct SFT enables rapid
convergence and efficient training for tasks requiring precise local-
ization. However, it may face limitations in handling tasks that
demand fine-grained analysis or multi-step reasoning, such as
Spatio-Temporal Video Grounding (STVG) or Spatial Relationship
Reference (SRR), where intermediate reasoning steps are crucial for
achieving accurate results.

4.2 Chain-of-Thought-Supervised Fine-Tuning
(CoT-SFT)

CoT-SFT introduces hierarchical reasoning supervision by leverag-
ing structured reasoning chains from our Video-CoT dataset. The
input-output formulation expands the basic framework to include
intermediate reasoning steps:

Input: 𝑉 ,𝑄 → Output: 𝑅,𝐴, (4)

where 𝑅 = {𝑟1, 𝑟2, . . . , 𝑟𝑛} represents the annotated reasoning chain
with 𝑛 intermediate steps, and 𝐴 denotes the final answer. The
model learns to generate both the reasoning process and the ulti-
mate solution through a two-phase optimization objective:

LCoT = −
|𝑅 |∑︁
𝑡=1

log 𝑃 (𝑟𝑡 | 𝑟<𝑡 ,𝑉 ,𝑄 ;𝜃 )

− 𝜆

|𝐴 |∑︁
𝑡=1

log 𝑃 (𝑎𝑡 | 𝑎<𝑡 , 𝑅,𝑉 ,𝑄 ;𝜃 ),

(5)

where 𝜆 is a hyperparameter that balances the importance of
reasoning step generation and final answer prediction. This dual-
objective formulation enables the model to simultaneously learn
explicit reasoning patterns and accurate answer generation.

This approach is particularly effective for complex multi-step
tasks where intermediate reasoning processes—such as object tra-
jectory analysis, event sequencing, or spatial relationship infer-
ence—are crucial for achieving correct solutions. To enhance train-
ing efficiency and model robustness, we implement a curriculum
learning strategy that progressively increases reasoning chain com-
plexity. The curriculum begins with simple 2-step reasoning scenar-
ios (e.g., temporal localization followed by spatial identification) and
advances to sophisticated 5-step chains involving complex spatial
relationship deduction and causal inference.

5 Experiments
5.1 Environment Setup
Benchmark To evaluate the effectiveness of our proposed methods
and dataset, we constructed the Video-CoT-Benchmark using the
same methodology as the Video-CoT dataset. This comprehensive
benchmark encompasses all six spatiotemporal understanding sub-
tasks: Video Captioning (VC), Temporal Video Localization (TVL),
Spatial Video Grounding (SVG), Spatio-Temporal Video Grounding
(STVG), Spatial Relationship Reference (SRR), and Temporal Video
Reference (TVR). The benchmark includes 4,500 video question-
answer pairs that are entirely distinct from the training dataset,
ensuring a thorough and unbiased evaluation of model performance
across various spatiotemporal reasoning tasks.
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Implementation DetailsWe conduct our experiments using
the Qwen2.5-VL-3B-Instruct model as the baseline, fine-tuning
it through two distinct methodologies: Answer-Supervised Fine-
Tuning (Ans-SFT) and Chain-of-Thought-Supervised Fine-Tuning
(CoT-SFT). The fine-tuning process utilizes the AdamW optimizer
with a learning rate of 10−6, employing mixed-precision training
to enhance efficiency on a single GPU. Training is performed for 1
epoch to ensure effective learning from the dataset while minimiz-
ing the risk of overfitting.

Evaluation Metrics We established distinct evaluation metrics
for each task. For Temporal Video Localization (TVL), we used
temporal Intersection over Union (tIoU) to assess localization ac-
curacy. In Video Captioning (VC) and Temporal Video Reference
(TVR), we employed the MENTOR metric to evaluate the quality
and relevance of generated captions and textual descriptions. For
Spatial Video Grounding (SVG) and Spatio-Temporal Video Ground-
ing (STVG), we utilized spatial Intersection over Union (sIoU) to
measure precision in spatial localization within single frames and
across frames, respectively, with STVG also incorporating tIoU
to ensure temporal accuracy. For Spatial Relationship Reference
(SRR), Exact Match (EM) was used to verify if predicted spatial
relationships align with ground truth labels. These criteria were
selected based on their relevance to each task’s requirements and
their effectiveness in measuring model performance in capturing
spatiotemporal information.

5.2 Results
The evaluation on Video-CoT benchmark reveals significant lim-
itations in current state-of-the-art VLMs when performing fine-
grained spatiotemporal reasoning for videos, as shown in Table 1.
Closed-source models generally outperform open-source counter-
parts across all benchmark tasks, with Gemini-1.5-pro achieving
the highest scores in most metrics. However, even the advanced
models demonstrate limited performance, particularly in STVG task
where the best score of 9.9 sIoU remains relatively low.

Table 2 demonstrates the effectiveness of our proposed training
approaches compared to the baseline Qwen2.5-VL (3B) model. Both
the Video-Ans-SFT and Video-CoT-SFT methods yield substantial
improvements across all tasks, with the CoT-SFT variant showing
particularly strong gains in temporally-oriented metrics (tIoU) for
TVL and TVR tasks. The Video-CoT-SFT achieves a remarkable 19.7
tIoU in TVL, outperforming not only its 3B baseline but also all
other open-source 7B models listed in Table 1. This performance
advantage confirms that Chain-of-Thought fine-tuning specifically
enhances a model’s capacity for long-term spatiotemporal reason-
ing compared to standard answer-based supervision, providing a
promising direction for developing more capable models.

6 Potential Applications
The Video-CoT dataset, with its dense spatiotemporal annotations,
balanced distribution of short and long videos, and structured Chain-
of-Thought (CoT) annotations, enables advanced research across
multiple domains. We highlight four key application areas that
leverage its unique characteristics:

Training and Benchmarking Spatiotemporal Reasoning
The Video-CoT dataset offers dense spatiotemporal annotations and

object trajectory information, providing high-quality benchmark
data for video spatiotemporal relation reasoning tasks [39, 42, 45,
48]. It supports the training of vision-language models (VLMs) with
spatiotemporal reasoning capabilities, including understanding rela-
tionships and event progression. The structured Chain-of-Thought
annotations (<think>...</think>) enhance the development of in-
terpretable video reasoning models, applicable in areas such as
autonomous driving (analyzing vehicle-pedestrian interactions)
and surveillance systems (detecting anomalous spatiotemporal pat-
terns). Additionally, its per-frame object localization and duration
labels enable precise evaluation of relational reasoning accuracy.

Advancing Long-term Video Understanding The dataset
features videos exceeding 160 seconds in duration, allowing re-
searchers to develop innovative long-term temporal modeling ap-
proaches [41, 46] with memory capabilities. These extended se-
quences support research on long-range dependency modeling and
event detection, particularly in applications requiring state tracking,
such as sports commentary. Moreover, the balanced mix of short
and long videos enhances studies on temporal generalization.

Cross-modal Retrieval Enhancement The comprehensive
annotations in Video-CoT significantly advance video-text retrieval
systems [9–13, 28] by enabling cross-modal search capabilities.
The dataset supports fine-grained queries that incorporate spatial,
temporal, and relational constraints, such as identifying specific
object interactions within defined time windows. This level of detail
facilitates accurate temporal grounding of textual descriptions to
specific video segments and enhances compositional cross-modal
retrieval through advanced relational reasoning. These capabilities
hold transformative potential in forensic investigations, allowing
analysts to efficiently search through extensive video evidence.

Intelligent Human-Computer Interaction Systems The pre-
cise spatiotemporal annotations in Video-CoT create new oppor-
tunities for intelligent interactive systems [27] requiring nuanced
video understanding. In augmented and virtual reality applications,
the dataset’s detailed object trajectory data facilitates more natu-
ral interactions between virtual and real-world objects, ensuring
proper occlusion effects. For robotic systems, timestamped object
positions and interaction patterns enhance dynamic environment
mapping, enabling robots to anticipate human actions effectively.
The structured <think> annotations are especially valuable for de-
veloping explainable AI assistants, allowing them to articulate their
spatiotemporal reasoning processes during human-computer inter-
actions and bridging the gap between complex visual understanding
and intuitive communication.

7 Conclusion
This paper introduces Video-CoT, a novel dataset aimed at enhanc-
ing spatiotemporal understanding in video comprehension using
Chain-of-Thought (CoT) methodologies. It contains 192,000 fine-
grained spatiotemporal question-answer pairs and 23,000 high-
quality CoT-annotated samples, organized into three key compo-
nents. A comprehensive benchmark for evaluation is also provided.
Our experiments reveal significant challenges faced by current
vision-language models (VLMs). In summary, Video-CoT represents
a valuable contribution to the community, advancing research in
multimodal content understanding.
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